Electrochemistry of conductive polymers. 45. Nanoscale conductivity of PEDOT and PEDOT:PSS composite films studied by current-sensing AFM.

نویسندگان

  • Hyo Joong Lee
  • Joowook Lee
  • Su-Moon Park
چکیده

[Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)] (PEDOT:PSS, Baytron P) composite films were prepared under various conditions and their conductivities were studied by the current-sensing atomic force microscopy (CS-AFM) technique. Topographic and current images of pristine and additive-treated PEDOT:PSS as well as electrochemically synthesized PEDOT films were obtained in nanoscale using the CS-AFM. The as-prepared pristine PEDOT:PSS films showed a low population of conductive spots isolated by large insulating regions; both their population and the conductivities increased upon addition of a few additives to the PEDOT:PSS solution before spin-coating. From the current-voltage (I-V) traces recorded at a few representative spots of different electronic states, much improved pathways for charge percolation appeared to have been established in the additive-treated films. Electrochemically prepared PEDOT films showed much better electrical properties compared with spin-casted films of chemically prepared polymers. The conductivity of all these films was shown to be significantly enhanced by the electrochemical doping process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells.

We proposed a facile film treatment with formic acid to enhance the conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) by 4 orders of magnitude. The effect of formic acid concentration on conductivity was investigated; conductivity increased fast with increasing concentration up to 10 M and then increased slightly, the highest conductivity being 2050 S cm(-1) u...

متن کامل

Electrochemistry of conductive polymers 37. Nanoscale monitoring of electrical properties during electrochemical growth of polypyrrole and its aging.

Electrical and morphological properties of polypyrrole (PPy) films were studied during and after their electrochemical growth under various experimental conditions on a nanometer scale using a current-sensing atomic force microscope (CS-AFM). Of acetonitrile (ACN) solutions containing various amounts of water, one that contained 1.0% water produced the best quality films in their electrical and...

متن کامل

Modification of Conductive Polymer for Polymeric Anodes of Flexible Organic Light-Emitting Diodes

A conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), was modified with dimethyl sulfoxide (DMSO) in solution state, together with sub-sequential thermal treatment of its spin-coated film. The electrical conductivity increased by more than three orders of magnitude improvement was achieved. The mechanism for the conductivity improvement was studied at nanos...

متن کامل

Growth Mechanism of Strain-Dependent Morphological Change in PEDOT:PSS Films

UNLABELLED Understanding the mechanism of the strain-dependent conductivity change in polymers in stretched conditions is important. We observed a strain-induced growth of the conductive regions of PEDOT PSS films, induced by a coalescence of conductive PEDOT-rich cores. This growth due to coalescence leads to a gradual decrease in the electrical resistivity up to 95%, independent of the thic...

متن کامل

A comprehensive study of sulfonated carbon materials as conductive composites for polymer solar cells.

Sulfonated carbon nanotubes (S-CNTs) and sulfonated graphene (S-Gra) with superior dispersibility were successfully prepared to modify poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) for applications in polymer solar cells (PSCs). The synergetic effect between S-CNTs/S-Gra and PEDOT:PSS could remove excess insulating PSS chains leading to an obvious phase separation between ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 114 8  شماره 

صفحات  -

تاریخ انتشار 2010